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THE ROTATION OF THE PLANET MERCURYJ'
by

Gluseppe Colom.bo2 and Irwin I. Shapiro3

/9578

Abstract.--Reliable radar observations and some of the generally
unreliable optical observations of Mercury are shown
to be consistent with its rotating in a direct fashion
with a period just two-thirds of its orbital period.
This possibility may be understood as a consequence
of the combined solar torques exerted on tidal
deformations and on a permanent asymmetry in Mercury's
equatorial plane, as suggested by Colombo. A simple
model illustrating this superharmonic resonance
phenomenon is developed in some detail; several
alternative paths by which Mercury could have reached
its present state of motion are discussed briefly.

[Atev

Introduction

Radar observations of the planets have uncovered some startling facts.
In the forefront of these are the discoveries that Venus has a retrograde rota-
tion with a period of 247 + 5 days (Carpenter, 196L4; Goldstein, 1964; and
Shapiro, 1964) and that Mercury's rotation, while direct, has a period of
59 + 5 days (Pettengill and Dyce, 1965). These radar data consist of delay-
doppler maps of the planetary surfaces (Pettengill and Shapiro, 1965) and seem

to be beyond question. Solar-system theorists are forced to find an explanation.

Trhis work was supported in part by grant no. NsG 87-60 from the National
Aeronautics and Space Administration.

2Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, and University
of Padua, Italy.

3Lincoln Laboratory, M.I.T., Lexington, Massachusetts, operated with support
from the U.S. Air Force.
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Our main purpose here is to present a preliminary, semiquantitative examination
of a recent proposal made by Colombo (1965) to explain Mercury's rotatianal

period. He noticed that this period might be exactly two-thirds of the orbital
3

period~ and conjectured that such a rotational motion might be stable under

the influence of solar torques, provided that there is a sufficiently large
difference between the two permanent principal moments of inertia lying in
Mercury's equatorial plane (i.e., provided that Mercury's inertia ellipsoid de-
viates sufficiently from rotational symmetry). Previously, in presenting their
exclusively tidal explanation of Mercury's present rotation, Peale and Gold
(1965) explicitly discounted the possibility that a permanent deviation from

axial symmetry could lead to any stable rotational period other than 88 days.

Before setting up a simple model with which to study this superharmonic
resonance condition, we shall discuss the optical observations of Mercury's
surface. We originally examined these data for two reasons: 1) to determine
whether or not they are consistent with the radar result, and 2) to determine
whether, if consistent, they allow a more precise value of the rotation period

to be deduced. OQur final decision to include this discussion was based more

on its historical interest.

Following our preliminary analysis of the model of Mercury's interaction
with the sun, we outline several evolutionary paths that Mercury may have
followed and discuss means of distinguishing between them based on further

study of the dynamics of its rotational motion.

3
58.65 days.

Note that two-thirds of the 87-9693-day sidereal orbital period is approximately
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Analysis of optical data

Because of Mercury's small size, low reflectivity, and close proximity
to the Bun, its markings are very difficult to observe telescopilcally and are
even more difficult to photograph. The optical observations have consequently

not been noted for their reliability.

At the start of the 19th century, Schroter claimed to have seen mountains
rising to 20 km on the planet, and he produced drawings of the surface.
Bessel (1813) deduced from these drawings a rotation period of 24 hr O min
53 sec, with the axis being inclined 70° to the orbital plane. Although some
astronomers remained skeptical, many found it especilally appealing aesthetic-
ally to think of Mercury, like Mars, as having approximately the same length
of day as the Earth. This "fact" was not finally discredited until the 1880's
when Schiaparelli's extended series of observations (Schiaparelli, 1889)
convinced almost everyone that Mercury was rotating slowly. He himself
actually concluded that the rotation was uniform with a period equal to the
orbital period of 88 days. From that time until this spring all observations
were interpreted as being consistent with the 88-day rotational period.
Danjon (192L4) concluded unequivocally but illogically, that Mercury's rota-
tion period was 88 days; and Antoniadi (1934) stated even more positively
that this period was beyond question. The details of Antoniadi’s proof, however,
were omitted; only a table indicating the number of times he had observed each
of a large number of surface markings was included. More recently, Dollfus
(1953), in comparing Schiaparelli's map with his own, concluded that Mercury's

rotational period equalled its orbital period "

with a precision greater than
one part in ten thousand" since the features of each map coincided to "within

10° of hermocentric longitude,” and since the maps were separated by




"53 years or 220 revolutions of Mercury." It is hard to assess the meaning
of this statement for several reasons: 1) the placing of features on the map,
at least in Schiaparelli's case, presupposed an 88-day rotational period; and
2) whereas Dollfus's map was based on Lyot's visual énd photographic observa-
tions of 1924, Schiaparelli's was based mainly on observations, over several
years, in the early 1880's (although his map was published only in 1889, i.e.,

53 years before Lyot's observations).

We have examined much of the original data, starting with those in
Schiaparelli's 1889 paper. The 88-day period was there based primarily on
observations of a particularly prominent surface feature, labelled q. These
observations were made during 6 sets of intervals in 1882 and 1883. Taken
literally, Schiaparelli's tabular summary of results is definitely not consistent
with a 59-day period. Sets of his observations of q were separated by approx-
imately 1 synodic period (116 days). Hence, were g visible at both ends of
this interval, on the basis of an assumed 88-day rotational period, it could
not have been seen at the "proper" place were the period 59 days; the difference
in the change in angular position on the 2 agssumptions is about 125° after a
synodic period. We are forced to conclude that on at least some days of
observation, Schiaparelli mistakenly thought he had identified the same feature
seen at other times. Nonetheless, Schiaparelli must be given full credit for

successfully exploding the myth of rapid rotation.

Schiaparelli's 1889 planispheric-map drawing of the only hemisphere of
Mercury presumably illuminated by the Sun if libration is ignored, apparently
exerted a strong influence on subsequent observers; e.g., Dollfus (1953) did
not consider the later maps of Rudaux (1928) and Antoniadi (1934) to be
independent of Schiaparelli's. Lowell's map (1897) is almost universally
appraised as being more a product of his imagination than of the actual surface
of Mercury. Despite these indications of mutual distrust among observers and

of the probable unreliability of the data, we studied the dated drawings of the

e




‘Y

appearance of Mercury's surface that were published by Antoniadi (l93h), by
Danjon (1924), and by Dollfus (1953). We paid especially careful attention to
the sets of drawings made over short time spans so as to infer the rotational
period unambiguously (granted the slow-rotation hypothesis) although inaccu-
rately. We also thought, at first, that the reliability of the identification
of the same surface features by the observer might be greater for observations
made closer together in time. Even taking the drawings quite literally, we
found difficulty in convincing ourselves of the proper identification of the
same feature on 2 that were separated by more than sbout 10 days.

We found the results of measurements on the relative location of "identical”
features that moved through the region of least foreshortening to be somewhat
more consistent with the 59-day period than with the 88-day period. A typical
result was a period of 7O % 15 days, which we obtained from the drawings

of 6 October and 19 October 1950 (Dollfus, 1953). In principle, a more

accurate determination of the period can be made by working with drawings widely
separated in time. But obstacles still remain. Not only is there the same
problem of reliably associating markings, but also the wider the time separation
of two observations the greater is the ambiguity in interpreting the results.

We do not know & priori how many complete revolutions intervened between the

two observations. Rather than computing the whole set of possible solutions

for each pair of drawings, we confined ourselves to those within the range of
ambiguity allowed by the radar data. Given two observations and the assumption
that Mercury's rotation axis is approximetely perpendicular to its orbital plene,

the direct rotation period P in days may be expressed as

P = = , (1)

where At in days is the elapsed time between the observations, n is zero or s

A~
LviLC

positive integer, end A$ denotes the hermocentric sidereal longitude of

Earth at the time of the later observation minus the corresponding quantity




for the earlier observation if the location of the feature being compared has the
same relation to the subearth point on Mercury in both cases. If the relative
location is otherwise, A% must be sdjusted accordingly. For the drswings deted
29 Merch 1912 and 2 May 1923 (Danjon, 1924), we find possible solutions et

P = 57.0, 57.8, 58.6, 59.5, 60.L4 dsys, etc., with the uncerteinty in eech being
gbout *+ 0.15 days. The drawings of 27 September 1927 end 23 August 1929
(Antonisdi, 1934) yield P = 50.0, 53.9, 58.4, 63.7 days, etc., with s probsble
error of * 0.4 days. Those of 22 July 1942 snd 12 October 1950 (Dollfus, 1953)
lead to P = 56.4, 57.5, 58.7, 59.8 days, etc., with a probable error of + 0.1 days.
We compared the 1923 and 1927 drawings to check for consistency in the "epoch"
and found P = 5k4.9, 56.9, 58.9 days, etc., with & probsble error of + 0.3 days.
(Even if the same features could be discerned on each, the comparing of
Antoniadi's and Dollfus's drawings would not be too useful because the intervels
between possible solutions would be very small in the region of interest.) In
all cases, the errors quoted are inversely proportiocnal to At and are based

on the inaccuracy in determining the relative hermocentric sidereal longitude

of the common feature selected from a pair of drawings. No attempt was made to

include the possible systematic error caused by observer bias.

These results appear to be not significantly inconsistent with Mercury's
rotation period being 58.65 days. We might even suppose that, except for
Schiaparelli's, almost all optical observations were made at intervals corres-
ponding in essence to even multiples of Mercury's orbitel period and hence to
integresl multiples of 58.65 days. The extended series of observations made by
Antoniadi and lyot seem to rule out this possibility, end the facts that
prominent festures on the one hemisphere were never noted es being in the
"wrong" locstion and that the other hemisphere of Mercury wes never recognized

as such provide powerful evidence for considering all drewings of Mercury's




» surface to be suspect. Prudence probably demands that we look to future rather
than to past observations for a reliable reduction in the present uncertainty

given by the radar determination of Mercury's rotational period.

A simple model of Sun-Mercury interactions

Mercury's physical constitution and shape are too poorly known to allow

us to formulate an accurate model of the solar interactions that affect its

rotational motion. Moreover, since our main goal here is merely to demonstrate
’ the stability of a rotational period equal to two-thirds of the orbital period,
we shall confine our analysis to a very simple model. First of all, we shall
consider Mercury's angular velocity vector to be normal to its orbital plane
so that we may restrict ourselves to a two-dimensional problem. We assume
that the total torque exerted on Mercury by the Sun is composed of two parts:
a tidal torque and a torque caused by Mercury's lack of axial symmetry. How
shall we represent these terms analytically? Consider the tidal term first.
The theory of a linear, slightly damped oscillator shows the response to lag
in phase behind the forcing function by an amount proportional to the damping
coefficient. Ium our case, the analog of the damping coefficient may depend
on the strength and frequency of the forcing function as well as on the
structural and compositional properties of the planet. For simplicity, we
shall take the phase lag to be a constant angle. Since it is a lag,its sign
will of course depend on the sign of 9 - v, where 6 is the inertial (dlrect)
rotational angular velocity of Mercury about its center of mass, and v is the
orbital angular velocity. For 6 > %5 the lag angle will be positive (i.e.,
will increase in a counterclockwise direction from the Mercury-Sun line when
one looks down on the orbital plane from the north). We must still model the
body distortion or tidal bulge on Mercury. We may argue that the strain

McGovern et al. (1965) slso reeanelyzed the opticel cbservetions of Mercury's
surface, but reached the stronger conclusion that these dsta show the rotation

period to be 58.4 £ 0.4 days.
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induced in the planet is directly proportional to the small differential
stress caused by the difference in solar gravity at different distances from
the Sun. The motion of this strained configuration depends again on solar
gravity, thus giving rise to the oft-quoted result that the tidal torque is
inversely proportional to the sixth power of the distance from the primary

(in this case, the Sun). The differential gravitational attraction is propor-
tional to the inverse cube of the distance and so both the stress and the
torque on the distorted configuration are individually proportional to the
inverse cube. We may therefore approximate the tidal torgue T; by the

expression

T% = - ;%-sgn (é -v) &, (2)

r

N

where k is a unit vector normal to the orbital plane and directed generally

north, T is a positive constant, and r is the Mercury-Sun distance.

We may for simplicity treat the permanent axial asymmetry of Mercury as
a dipole in the equatorial plane, superposed on an otherwise spherically
symmetric planet. If the dipole consists of two points each of mass m and each
a distance d from the planet's center of mass, with the line joining them

passing through the center of mass, then the resultant solar torque T . is

pd
easily shown to be
3GMo(B - A) sin 2(6 - v)
— a —
T  =- [1 + o(—)] k (3)
pd 2r3 T ?

where G is the gravitational constant, M@ the mass of the Sun, 6 the orienta-

tion of the dipole line with respect to the apsidal line of the orbit, v the

2

orbital true anomaly, and B - A = 2md~ the difference between the maximum




and minimum moments of inertia lying in the planet's equatorial plane. The
axis of minimum moment of inertia obviocusly lies along the dipole line. A

more realistic model of a planet with sn elliptical equator yields the same

result as eq. (3).

There will of course be coupling between Mercury's rotational and
orbital motion. However, even if Mercury's rotational period had once been
only one day, its total angular momentum of rotation would have been less than
1 part in lO7 of its present orbital angular momentum. We are therefore safe in
neglecting the effects on orbital motion. Mercury also raises a tide on the
Sun and the resultant interaction will affect Mercury's orbital motion. A
preliminary estimate indicates that this effect too may be neglected. But the
orbital motion is affected significantly by the perturbing effects of other
planets. As shown by Brouwer and Clemence (1961), Mercury's eccentricity
e apparently undergoes a long-period oscillation between the values of 0.11 and
0.2k; its apsidal line rotates with a period of about 2.2 X 105 years. For
the moment, we neglect these variations as well and write the decoupled

equation of motion for rotational motion as

. 0 ... 3 (B -A)
IG=--rzsgn(G—v)-—2—r§—sin2(e-V) s (%)

where the orbital parameters are presumed constant and where I is the moment

of inertias about the k axis. Consolidating constants we find

g = - £% sgn (é - v) --%%sin 2(8 -v) . (5)

r

The order of magnitude of the important ratio o/B will be considered later.




For the rotational motion to be stable, we require that the average
total torque vanish,and that if Mercury's orientation and frequency of rota-
tion are perturbed then the resultant torque tends to oppose the perturbations.
Since o and B are very small, we may replace the right side of eq. (5) by its
average value over an orbital period, keeping 6 and the orbital elements

constant. A somewhat tedious calculation shows that

( 1/2 2

_[1+ 3e2+%e)+] ;ésp??[l-e]

b

1 .
= [2(11 - 2vc) - 1l6e sin vc]

+6e2 [ﬂ—Ev —sin2v]
c c
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and where p denotes GM,, p the semilatus rectum, a the semimajor axis, and T
. 1/2
the period of Mercury's orbit. If 6 < %5 1 - e]g, which corresponds to a
D
direct rotation with period = 132 days and to any retrograde rotation, the

. /2
tidal torque will be positive throughout the orbit; if 6 = J"’w—e- 1+ e]g, which
b

corresponds to a direct rotation with period < 56 days, the tidal torque will
be negative throughout the orbit. For intermediate values of 8, the torque

changes sign when v = v, and when v = 21 - v,

A similarly tedious calculation leads to

T
£j dat [— £ sin 2 (6 - v)] = - —§—3 [cos (260 + b %) - cos 280]
TO 3 Yo p

62 3
+-2— - +O(e)

, (8)

where n = p,l/ 2/ a3/ 2 is Mercury's mean motion and 90 is the initial orienta-
tion of the equatorial axis of minimum moment of inertia with respect to the
apsidal line at perihelion. Equation (8) exhibits the expected zero-
order resonance at § = n; in first order in e, we find a resonance at

8 = n/ 2 and a surprisingly strong resonance at 6 = 3n/ 2, corresponding to

11—




the 58.65-day rotation period. 1In second order in e, we find resonances only
at é = n and é = 2n. In the limit as é/n approaches an integral or half-

integral value, it is easy to show that

cos (260 + b %) - cos 290 —_—  F L4m § sin 290 + 0(52) , (9)

+ 6

—_

Blo
g

where m = 0,1,..., and § << 1. Hence the average gravitational torgue is a
maximum when the equatorial axis of minimum moment of inertia is oriented at
45° %o the apsidal line at the time Mercury passes through perigee. It is
clear that for nonresonant values of é/n, the gravitational torque tends to
average out over sufficiently long time intervals. The effective width of
a gravitational resonance depends on the length of time over which it is valid
to consider 8 constant. In Figure 1 we have plotted the right sides of egs. (6)
and (8); the latter is shown forq3= +45° with the positive values of the
average torque corresponding to 90 = -MSO, except for the resonance at L %

n
for which Tﬁd has the opposite sign. The resonance widths have been drawn

)

only schematically. Figures 2 and 3 show the corresponding curves for e = 0.15
and e = 0.25, respectively. All ordinate scales are arbitrary; in particular

the ordinates for T% and for Tﬁd are not drawn to the same scale. For T£ only
(04

the coefficient of s is shown, whereas for T . the coefficient of
a2(1 - 62)972 pd

—§§ is given.

hp

It is clear that if /B is sufficiently small, there will be some value
of 8,(0 = 85 = 180°) for which the average total torque will be zero when
6 = 3n/2. As an indication of the actual value of qfB, we note that were the

fractional difference in Mercury's equatorial moments of inertia identical

to that of the Moon (i.e., 2 X 10'1‘), then

Br 1070 (10)

-12-
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when time is expressed in units of Mercury's orbital period and distances are
expressed in units of_ its semimajor axis. To obtain a crude estimate of o,
we set T£ equal to % %% , where %% is the approximate expression given by
Munk and MacDonald (1960) for the tidal energy dissipated into heat by the
Earth, but with parameter values appropriate for the Mercury-Sun case substi-
tuted for those suitable for the Earth-Moon system. For a phase lag of

2.5 x 1073

(Munk and MacDonald, 1960), we find

rad, which corresponds approximately to the Q of the Earth's interior

an 2 X 1070 (11)

in the same units as were used to express B. Even were the fractional
difference in Mercury's equatorial moments of inertia much smaller than the
difference for the Moon, and even were the tidal torque far greater than
estimated above, we would Tind that a very small negatlve value of 9 would
suffice to make the total average torque vanish at é 2 . That such an orien-
tation and frequency will indeed be stable is 1llustrated in Figure L4, where
we show the results of a numerical integration of eq. (5). The values of 6
and é are presented at successive perigee passages. (In order to show the
convergence to a stable point in the phase plane without excessive use of
computer time, we increased the value of o to 10_5.) The tendency to converge
3 3

toward the stable point at 6 =~ 5 nt - 0.01 rev, 6 =~ 510 + 0.001 rev/orb. per.

is apparent.

We reserve for another report an analytical demonstration of this stability.
There we will also discuss the possibility of achieving stability at, for

example, 8 =nand at 6 = 2n for various values of e. A gualitative indication

3

of the "favored" position of 6 = o can be gleaned from the relative strengths

of T pd’ especially for e = 0.25.

-13-




For comparison, we show in Figures 5 and 6 the orientstions of the axis

of minimum moment of inertis 8t different orbitsl positions for 60 =0, 6 = % n,
and GO = 0, 0 = n, respectively. WNote that for 6 = g-n, the exis of minimum

moment of inertia is aligned very closely with the Mercury-Sun line throughout
the region of strong interaction near perihelion, thus giving a geometric indica-

3

tion of the relatively large magnitude of de at § = 5 n. That is, for & rela-

tively small value of GO, the torque T;d will meintain the same sign throughout

this region.

Problems for future study

We may conclude at least that the observations and our theoretical
analysis are consistent with Mercury's present rotation being stable with a
period equal to two-thirds of its orbital period. Many questions, of course,
remain; we shall consider some of these briefly in the context of two possible
evolutions of Mercury's state of motion. Without delving into the problem of
planet formation, we may start with the following possible initial configura-
tions: 1) Mercury orbiting about the Sun and rotating in a direct fashion
with a period on the order of 10 hr; and 2) Mercury moving in & retrograde orbit
about Venus (Shapiro, 1965). For configuration 1) we must show that enough
time has been available for solar tidal friction (or other devices) to have
reduced the rotational angular velocity to its present value. If we assume
that e has always varied between 0.1 and 0.25 and that the effective Q of
Mercury 1s the same as that of BEarth, then 5 X 109 yr appears to be a sufficient
interval. For the Eerth, however, most of the energy loss seems to be
through land-water friction which is most likely not true for Mercury.

Light reflected from Mercury yields a polarization curve very similar to the
Moon's (Antoniadi, 1934) and lends support to the supposition that its surface
may be of the same porous, but solid structure. Recent temperature measure-
ments also seem consistent with the surface being solid. It therefore appears
more reasonable to take for the effective Q of Mercury a value corresponding
more closely to that for the interior of the Earth as was done in evaluating

o above. The age of the solar system then only provides barely enough time

iy I




for tidal dissipation to account for the present rotational speed. For the
first configuration we must also explain the origin of the permanent equatorial
deformation. Another question is: "If Mercury's rotation is now stable with

0 ~ % n why were earlier states (e.g., 8~ 2n) not stable?"

Given the second initial configuration, we may envision that tidal inter-
action eventually resulted in both Mercury and Venus constantly presenting the
same face to each other, thus accounting for Venus's retrograde rotation. But
one must then find a plausible model of the Sun's capture of Mercury and of
the latter's evolution into its present orbit, without violating order of
magnitude estimates of the energies and angular momenta involved. At least
an axial asymmetry of Mercury's inertia ellipsoid, comparable to that of the
Moon, would be more easily explained on the basis of this initial configuration.
We must, of course, still show how Mercury's rotation evolved to its present
value from an initial post-Sun-capture retrograde motion, i.e., we must show,
for example, that its angular velocity would not have remained near the value

8 = n.

Depending on the outcome, a stability analysis of é =n and of 6 = 2n
may enable us to distinguish between these two evolutionary paths; at least,
we will be able to place limits on the values that o and B may have possessed
at various stages of the evolution. Future radar determinations of Mercury's
equatorial ellipticity and its orientation will also help place bounds on «
and B. Knowledge of the actual direction of Mercury's rotational angular
velocity vector might be useful to establish the present stage of evolution
of the rotational motion in comparison with the Moon's (i.e., to establish the
proximity to the stable minimum of the precession angle of the angular velocity

vector).

-15-




Although the conclusions concerning the amplitude of oscillation of e
may be in error, the rotation of the apsidal line can hardly be in doubt.
We must, therefore, demonstrate that for the stable rotation the axis of
minimum moment of inertia maintains its orientation at perihelion as the

latter rotates. Any change in eccentricity will alter the balance of T nd

a
Tﬁ in virtue of their different radial dependencies. The effect on sta%ility
of such changes must be investigated; in particular the possibility of the
rotational angular velocity evolving from being near one harmonic of n to
being near another must be considered. But if o was always on the order of
10_7, then the time scale of evolution of Mercury's rotational motion might
be sufficiently long for us to average over the oscillations in e caused by

planetary perturbations.

We intend to return to many of these problems in a later study.

~16-
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Figure 4.--An indication of the stability of Mercury's rotation for % =

nojw

obtained from a numerical integration of eq. (5). The points
indicate the coordinates in phase space of the axis of minimum |
moment of inertia at the particular perihelion passage indicated

by the accompanying number. A continuous curve was drawn through

these points solely to emphasize the trend toward convergence.
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Figure 5.--Orientation of Mercury's axis of minimum moment of inertia at

various points along its orbit for 6 = % n, SO = 0.
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Figure 6.--Orientation of Mercury's axis of minimum moment of inertia at

various points along its orbit for 6 = n, GO = 0.
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NOTICE

This series of Special Reports was instituted under the supervision
of Dr. F. L. Whipple, Director of the Astrophysical Observatory of the
Smithsonian Institution, shortly after the launching of the first artificial
earth satellite on October h, 1957. Contributions come from the Staff of
the Observatory.

First issued to ensure the immediate dissemination of data for satellite
tracking, the reports have continued to provide a rapid distribution of
catalogs of satellite observations, orbital information, and preliminary
results of data analyses prior to formal publication in the appropriate
journals. The Reports are also used extensively for the rapid publication
of preliminary or special results in other fields of astrophysics.

The Reports are regularly distributed to all institutions participating
in the U. S. space research program and to individual scientists who request
them from the Publications Division, Distribution Section, Smithsonian
Astrophysical Observatory, Cambridge, Massachusetts 02138.




